O.P.Code: 20EC0436 R20 , H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Regular Examinations February-2024 WIRELESS COMMUNICATIONS

		WIRELESS COMMUNICATIONS			
		(Electronics & Communications Engineering)	x. Mar	ks: 6	0
Time:	3		A. Mai	AS. U	•
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I	CO1	L1	6M
1	a	Discuss briefly about the evolution of Mobile radio communication.	CO1	L1	6M
	b	Tabulate list of terms used to describe various elements of wireless	COI	LI	OIVI
		communication systems.			
		OR	CO1	12	6M
2	a	Discuss how to improve the cellular capacity by decreasing the D/R	COI	L2	OIVI
		ratio and by keeping the cell radius unchanged?	CO2	T 1	6M
	b	Discuss the impact of adjacent channel interference on the system	COZ	L1	OIAI
		capacity.			
		UNIT-II			
3	a	How the received signal strength is predicted using the free space	CO ₃	L1	6 M
		propagation model? Explain?			
	b	If a transmitter produces 50W of power, express the transmit power in	CO ₅	L4	6M
		units of dBm, dBW. If 50W is applied to a unity gain antenna with			
		900MHz carrier frequency, find the receiver power in dBm at a free			
		space distance of 100m from the antenna. What is Pr (10 km)? Assume			
		unity gain receiver antenna.			
		OR	G04	т.а	CM.
4	a	Draw neat diagrams illustrating knife-edge geometry with appropriate	CO ₃	L2	6M
		Notations.	G00		CNA
	b	Explain the dependence of surface roughness on the frequency and angle	CO ₃	L2	6 M
		of incidence.			
		UNIT-III			
5	ด	Describe the factors influencing small scale fading in the radio	CO1	L2	6M
J		propagation channel.			
	b	The speed of the aircraft is 500km/hr and it is heading towards the	CO5	L4	6 M
	~	airport control tower at an elevation of 25 degrees. The communication			
		between the aircraft tower and the plane takes place at a frequency of			
		approximately 128MHz. What is the expected Doppler shift of the	,		
		received signal in positive and negative directions?			
		OR	~~~	w 4	CNA
6	2	Evaluate frequency selective fading due to Multipath time delay spread.	CO3	L4	6M
Ū	ŀ	If the coherence bandwidth is calculated as 100 kHz in the given radio	CO5	L4	6M
		channel of 900 MHz frequency, calculate the maximum symbol rate that	τ		
		can be transmitted over this channel that will suffer minimal intersymbo	l		
		interference.			

		UNIT-IV			
7	a	Explain about fundamentals of Equalization.	CO4	L2	6M
	b	Explain the basic structure of an adaptive equalizer with neat diagram.	CO ₄	L2	6M
		OR			
8	a	Explain about selection diversity and feedback diversity.	CO4	L2	6M
	b	Explain about maximal ratio combining and equal gain diversity.	CO4	L1	6M
		UNIT-V			
9	a	Explain the multiple access scheme for narrowband systems and ideband	CO1	L2	6M
		systems.			
	b	Describe the features of the frequency division multiple access (FDMA)	CO ₁	L2	6 M
		scheme ,		12	
		OR			
10	a	Explain the operation of precoding and beamforming schemes.	CO6	L1	6M
	b	Illustrate transmit diversity and receive diversity with neat diagram.	CO ₄	L3	6M

*** END ***